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Can supershear transition be seen in damage and aftershock pattern?  

Part one: Theory 

Lucile Bruhat, J. Jara, S. Antoine, K. Okubo, M.Y. Thomas,  
E. Rougier,  A. J. Rosakis, C. Sammis, Y. Klinger,  R. Jolivet & H.S. Bhat
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As shown by Michel Bouchon, supershear ruptures are rare events

Although easy to reproduce in theoretical and numerical studies, as early as Burridge 
(1973) and Andrews (1976). 

Following the classical Burridge-Andrews criterion, as first sight they need to be 
triggered by high background shear stress.

In practice….

Associated with linear, narrow fault segments by field studies [Bouchon, et al., 2010]
Ø Homogenous stress-strength conditions ?
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BUT Supershear rupture can develop when the rupture propagates from a region of 
high strength to a region of low strength [Dunham, 2007, Liu and Lapusta, 2008]

ØHeterogeneous stress-strength conditions ?
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BUT Supershear rupture can develop when the rupture propagates from a region of 
high strength to a region of low strength [Dunham, 2007, Liu and Lapusta, 2008]

ØHeterogeneous stress-strength conditions ?

What are the conditions for transitioning supershear?

[Bruhat, et al. 2016]

Example from looking at rough faults

• Supershear transients are more likely on 
rough, i.e. non planar faults

• Supershear is observed even at low 
background shear stress (outside the 
classical Burridge-Andrews range) 
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So what is the sticking point here?

“The rupture is sub-Rayleigh”

“The rupture is supershear”

• Observational studies focus on the well-developed part of the supershear rupture, a vague location of the 
transition is deduced a posteriori

• Numerical studies focus on generating that transition without knowing what are the actual field 
conditions are for the transition

• Need for a physics-based method to locate the transition sub-Rayleigh/supershear 

Transition is somewhere here
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What is the stress intensity at the crack tip?

Solutions to describe the state of stress around a crack tip using Linear Elastic Fracture Mechanics (LEFM) 
[Williams, 1957, Freund, 1979].  

Semi-infinite plain-strain crack in a 2D 
homogeneous isotropic linear medium 
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What is the stress intensity at the crack tip?

Semi-infinite plain-strain crack in a 2D 
homogeneous isotropic linear medium 

Solutions to describe the state of stress around a crack tip using Linear Elastic Fracture Mechanics (LEFM) 
[Williams, 1957, Freund, 1979].  

𝐾)) = Δ𝜏 𝜋𝐿For reference

where Δ𝜏 the stress drop and L the crack length   
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Static Dynamic stress 
intensity factor 

Now, let the rupture move at a speed v 
Due to the moving coordinate system, all the fields undergo a Lorentz-like contraction, affecting both the stress
intensity factor K and the angular function f
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Now, let the rupture move at a speed v 

For a rupture propagating at speed v < cR

As v → cR, 
K<<
=>? → 0

𝜎"#→ 0

Due to the moving coordinate system, all the fields undergo a Lorentz-like contraction, affecting both the stress
intensity factor K and the angular function f

The stress concentration will shrink with increasing speed !6



Stress intensity at the crack tip controls the extent of off-fault damage
Classical Drucker-Prager failure criteria to compute the extent of the yield region (region where damage is 
allowed)
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Stress intensity at the crack tip controls the extent of off-fault damage
Classical Drucker-Prager failure criteria to compute the extent of the yield region (region where damage is 
allowed)
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1 − 𝑣
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𝐿(𝑡) Δ𝜏F 𝜋 𝐴 𝜃, 𝜈, 𝑓, 𝐹Extent of the 
damaged region

Increases with the crack length L 

Decreases with increasing speed v
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[Jara, Bruhat, et al., submitted]

Stress intensity at the crack tip controls the extent of off-fault damage

Extent of the 
damaged region

Ø Decreases with increasing speed v
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[Jara, Bruhat, et al., submitted]

Extent of the 
damaged region

Ø Decreases with increasing speed v
Ø Increases with crack length L

Stress intensity at the crack tip controls the extent of off-fault damage
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What could it mean for supershear transition?

Theoretical method valid when the rupture is sub-Rayleigh v < cR

But, to transition to supershear, the rupture has to first bypass cR!

We expect to see shrinkage of the near-fault damage zone at the transition 
sub-Rayleigh/supershear

à Verification using two numerical codes for dynamic rupture 
and damage generation
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[Okubo, et al., JGR, 2019]

FDEM numerical methods 
[Okubo, et al., JGR, 2019] 
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• Combined Finite-Discrete Element 
Method (FDEM) to produce dynamically 
activated off-fault fracture networks 
[Rougier, et al. 2016]

• During sub-Rayleigh, extent of the off-
fault fracture zone grows linearly with 
the rupture propagation. 

• Spatial extent of the off-fault damage 
zone drops dramatically when 
transitioning to supershear regime



[Jara, Bruhat, et al., submitted, using the method developed in Okubo, et al., JGR, 2019 ]
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FDEM numerical methods [Okubo, et al., JGR, 2019] 



[Thomas & Bhat, GJI, 2018 ]13

Micromechanics approach [Thomas & Bhat, GJI, 2018 ]

• Reflects the micro-physics of damage evolution by relating damage density to the near-tip stress 
state and by computing the corresponding dynamic changes of elastic properties in the medium 
due to the presence of newly formed cracks.

• Sudden shrinkage of the damage zone during the supershear transition 

Damage extent

Region of supershear 
transition



[Jara, Bruhat, et al., submitted, using the method developed in Thomas & Bhat, GJI, 2018 ]
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Micromechanics approach [Thomas & Bhat, GJI, 2018 ]



What we’ve learned from fracture mechanics and numerical modeling
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• Stress intensity at the crack tip evolves with the rupture velocity 

• As the rupture velocity approaches the Rayleigh wave speed, before transitioning to 
supershear, the stress intensity reduces

• As a result, the region affected by the stress intensity decreases in size as well, leading to 
a sudden shrinkage of the near-fault damage zone 
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• Stress intensity at the crack tip evolves with the rupture velocity 

• As the rupture velocity approaches the Rayleigh wave speed, before transitioning to 
supershear, the stress intensity reduces

• As a result, the region affected by the stress intensity decreases in size as well, leading to 
a sudden shrinkage of the near-fault damage zone

IS THIS REAL?


